PhD Thesis Defense
Presented by Stephan Wyder
Faculty representative: | Prof. Dr. Philippe C. Cattin |
Co-referee: | Prof. Dr. Raphael Sznitman |
External expert: | Prof. Dr. med. Francis Munier |
Further:
$$ \definecolor{myblue}{RGB}{16,127,199} \definecolor{mygreen}{RGB}{123,171,5} \definecolor{myyellow}{RGB}{254,184,84} w_{ij} \bullet {\color{myyellow}\textbf{c}} - w_{ij} \bullet {\color{mygreen}\textbf{o}_j} = 0\\ w_{ij}^T \cdot {\color{myyellow}\textbf{c}} = w_{ij} \bullet {\color{mygreen}\textbf{o}_j}\\ \underbrace{ \left[ \begin{array}{c} {[({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A4}}-{\color{mygreen}\mathbf{o}_A})]}^{T}\\ {[({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B4}}-{\color{mygreen}\mathbf{o}_B})]}^{T}\\ \vdots \\ {[({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A1}}-{\color{mygreen}\mathbf{o}_A})]}^{T}\\ {[({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B2}}-{\color{mygreen}\mathbf{o}_B})]}^{T}\\ \end{array} \right] }_{\text{M}_2} \cdot \, {\color{myyellow}\textbf{c}} = \underbrace{ \left[ \begin{array}{c} ({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A4}}-{\color{mygreen}\mathbf{o}_A}) \bullet {\color{mygreen}\mathbf{o_A}}\\ ({\color{mygreen}\mathbf{l}_{A1}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B4}}-{\color{mygreen}\mathbf{o}_B}) \bullet {\color{mygreen}\mathbf{o_B}}\\ \vdots \\ ({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_A}) \times ({\color{myblue}\mathbf{u}_{A1}}-{\color{mygreen}\mathbf{o}_A}) \bullet {\color{mygreen}\mathbf{o_A}}\\ ({\color{mygreen}\mathbf{l}_{B2}}-{\color{mygreen}\mathbf{o}_B}) \times ({\color{myblue}\mathbf{u}_{B2}}-{\color{mygreen}\mathbf{o}_B}) \bullet {\color{mygreen}\mathbf{o_B}}\\ \end{array} \right] }_{\mathbf{h}}\\ \mathbf{M}_2 \cdot {\color{myyellow}\mathbf{c}} = \mathbf{h}\\ {\color{myyellow}\mathbf{c}} = (\mathbf{M}^\text{T}_2 \mathbf{M}_2)^{-1} \cdot \mathbf{M}^\text{T}_2 \mathbf{h} $$
Eye localization system:
Improved navigation: